Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.261
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 28(7): 2654-2661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639504

RESUMO

OBJECTIVE: This study aimed to explore the effect of flipped venous catheters combined with spinal cord electrical stimulation on functional recovery in patients with sciatic nerve injury. PATIENTS AND METHODS: 160 patients with hip dislocation and sciatic nerve injury were divided into conventional release and flipped catheter + electrical stimulation groups according to the treatment methods (n=80). Motor nerve conduction velocity (MCV) and lower limb motor function were compared. Serum neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were compared. The frequency of complications and quality of life were also compared. RESULTS: The MCV levels of the common peroneal nerve and tibial nerve in the flipped catheter + electrical stimulation group were greater than the conventional lysis group (p<0.05). After treatment, the lower extremity motor score (LMEs) in the flipped catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). The serum levels of BDNF and NGF in the flip catheter + electrical stimulation group were higher than the conventional lysis group (p<0.05). The complication rate in the flipped catheter + electrical stimulation group was lower than in the conventional release group (6.25% vs. 16.25%, p<0.05). The quality-of-life score in the flip catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). CONCLUSIONS: The flipped venous catheter combined with spinal cord electrical stimulation can improve nerve conduction velocity, lower limb motor function, serum BDNF and NGF levels, reduce complications, and help improve the quality of life of sufferers with sciatic nerve injury. Chictr.org.cn ID: ChiCTR2400080984.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuropatia Ciática , Ratos , Animais , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Neural/metabolismo , Qualidade de Vida , Neuropatia Ciática/metabolismo , Neuropatia Ciática/terapia , Medula Espinal/metabolismo , Nervo Isquiático , Cateteres , Estimulação Elétrica/métodos
2.
Nat Commun ; 15(1): 3225, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622181

RESUMO

Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Receptor de Fator de Crescimento Neural , NF-kappa B , Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural , Inflamação , Cartilagem Articular/metabolismo , Articulações/metabolismo
3.
Transl Psychiatry ; 14(1): 193, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632257

RESUMO

Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Humanos , Transtorno Autístico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolina , Dopamina , Fator de Crescimento Neural/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transmissão Sináptica/fisiologia , Transtorno do Espectro Autista/metabolismo , Tonsila do Cerebelo/metabolismo , Ácido gama-Aminobutírico , Modelos Animais de Doenças
4.
Theranostics ; 14(6): 2345-2366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646645

RESUMO

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Assuntos
Desacetilase 6 de Histona , Camundongos Transgênicos , Fator de Crescimento Neural , Folículo Ovariano , Ubiquitinação , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Animais , Feminino , Folículo Ovariano/metabolismo , Humanos , Camundongos , Acetilação , Fator de Crescimento Neural/metabolismo , Células da Granulosa/metabolismo
5.
Sheng Li Xue Bao ; 76(2): 301-308, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658378

RESUMO

Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Mialgia , Fator de Crescimento Neural , Humanos , Mialgia/fisiopatologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Transdução de Sinais , Animais , Hiperalgesia/fisiopatologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
6.
Sci Rep ; 14(1): 8943, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637604

RESUMO

Total knee arthroplasty (TKA) is an effective procedure for pain relief; however, the emergence of postsurgical pain remains a concern. In this study, we investigated the production of nerve growth factor (NGF) and mediators that affect NGF production and their function in the synovial fluid and plasma after TKA. This study included 19 patients (20 knees) who had rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and knee osteoarthritis (OA) who underwent TKA, categorized into OA and non-OA groups. The levels of NGF, inflammatory cytokines, and lipid mediators were analyzed before and after surgery. The intraoperative synovial fluid NGF concentration was more than seven times higher in the non-OA group than in the OA group. The intra-articular NGF levels increased significantly by more than threefold postoperatively in the OA group but not in the non-OA group. Moreover, the levels of inflammatory cytokines and lipid mediators were increased in the synovial fluid of both groups. The intra-articular cytokines or NGF concentrations positively correlated with postoperative pain. Targeted NGF control has the potential to alleviate postsurgical pain in TKA, especially in patients with OA, emphasizing the importance of understanding NGF dynamics under different knee conditions.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/efeitos adversos , Líquido Sinovial/metabolismo , Fator de Crescimento Neural/metabolismo , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/metabolismo , Dor Pós-Operatória/metabolismo , Citocinas/metabolismo , Lipídeos
7.
Medicina (Kaunas) ; 60(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38541206

RESUMO

Background and Objectives: Diabetic peripheral neuropathy (DPN) affects approximately half of patients with diabetes mellitus (DM), contributing to falls and fractures. Oxidative stress, which is linked to DM-induced hyperglycemia, has been implicated in the onset of DPN. Although exercise is recommended for patients with DM, its effect on DPN remains unclear. Therefore, this study aimed to investigate the effect of exercise on DPN and the mechanisms involved. Material and Methods: Thirty male Wistar rats were divided into control, streptozotocin (STZ)-induced diabetic (DM), and STZ-induced diabetic/exercise (DM + Ex) groups. Diabetes was induced using STZ injection. Rats in the DM + Ex groups underwent six weeks of treadmill exercise. Sciatic nerve parameters, which included motor nerve conduction velocity (MNCV), antioxidant enzymes (catalase, glutathione peroxidase [GPx], and superoxide dismutase [SOD]), oxidative stress markers (malondialdehyde [MDA] and 4-hydroxy-2-nonenal [4HNE]), and neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]), were examined. Results: Exercise alleviated DM-induced decreases in MNCV in rats. Although exercise did not significantly affect antioxidant enzyme activity, 4HNE levels increased significantly, indicating increased oxidative stress. Additionally, exercise did not significantly affect DM-induced increases in NGF and BDNF levels in rats. Conclusions: Exercise may prevent DPN in rats with DM, possibly through nonantioxidant mechanisms.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Humanos , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Estreptozocina , Fator Neurotrófico Derivado do Encéfalo , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Fator de Crescimento Neural/metabolismo , Estresse Oxidativo , Nervo Isquiático/metabolismo , Glicemia/metabolismo
8.
J Dermatol Sci ; 113(3): 138-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429137

RESUMO

BACKGROUND: Postherpetic pain (PHP) is difficult to control. Although Neurotropin® (NTP) and methylcobalamin (MCB) are often prescribed to treat the pain, the efficacy of combined treatment for PHP remains imcompletely understood. OBJECTIVE: In this study, we investigate the combined effects of NTP and MCB on PHP in mice. METHODS: NTP and MCB were administered from day 10-29 after herpes simplex virus type-1 (HSV-1) infection. The pain-related responses were evaluated using a paint brush. The expression of neuropathy-related factor (ATF3) and nerve repair factors (GAP-43 and SPRR1A) in the dorsal root ganglion (DRG) and neurons in the skin were evaluated by immunohistochemical staining. Nerve growth factor (NGF) and neurotrophin-3 (NT3) mRNA expression levels were evaluated using real-time PCR. RESULTS: Repeated treatment with NTP and MCB after the acute phase inhibited PHP. Combined treatment with these drugs inhibited PHP at an earlier stage than either treatment alone. In the DRG of HSV-1-infected mice, MCB, but not NTP, decreased the number of cells expressing ATF3 and increased the number of cells expressing GAP-43- and SPRR1A. In addition, MCB, but not NTP, also increased and recovered non-myelinated neurons decreased in the lesional skin. NTP increased the mRNA levels of NTF3 in keratinocytes, while MCB increased that of NGF in Schwann cells. CONCLUSION: These results suggest that combined treatment with NTP and MCB is useful for the treatment of PHP. The combined effect may be attributed to the different analgesic mechanisms of these drugs.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Neuralgia Pós-Herpética , Polissacarídeos , Vitamina B 12/análogos & derivados , Camundongos , Animais , Neuralgia Pós-Herpética/tratamento farmacológico , Fator de Crescimento Neural/metabolismo , Proteína GAP-43/farmacologia , Herpes Simples/complicações , Herpes Simples/tratamento farmacológico , RNA Mensageiro
9.
Sci Immunol ; 9(93): eadi5578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427717

RESUMO

Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.


Assuntos
Mastócitos , Bexiga Urinária , Humanos , Camundongos , Feminino , Animais , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Fator de Crescimento Neural/metabolismo , Reinfecção/complicações , Reinfecção/metabolismo , Dor/etiologia , Dor/metabolismo , Dor/prevenção & controle
10.
FEBS Open Bio ; 14(4): 643-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429912

RESUMO

The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.


Assuntos
Fator de Crescimento Neural , Neurônios , Masculino , Ratos , Animais , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
11.
Brain Behav ; 14(1): e3356, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376046

RESUMO

BACKGROUND AND PURPOSE: Cognitive impairment is a prevalent adverse consequence of traumatic brain injury (TBI). The neuroprotective effects of nicorandil (N-(2-hydroxyethyl)-nicotinamide nitrate) has been previously documented, yet its protective effects against cognitive dysfunction post-TBI remain unclear. Hence, the present study was aimed to evaluate whether nicorandil attenuates cognitive dysfunction in TBI rats and the underlying mechanism behind this process. METHODS: The TBI model was established with a controlled cortical impact (CCI). The effects of nicorandil on cognitive dysfunction of rats with TBI were examined through Novel object recognition (NOR) test, Y-maze test, and Morris water maze (MWM) task. After behavioral tests, hippocampal tissue was collected for Quantitative real-time PCR, Western blot analysis, and Enzyme-linked immunosorbent assay (ELISA) assay. RESULTS: We observed that nicorandil administration effectively ameliorates learning and memory impairment in TBI rats. Alongside, nicorandil treatment attenuated oxidative stress in the hippocampus of TBI rats, characterized by the decreased reactive oxygen species generation, malondialdehyde, and protein carbonyls levels, and concurrent promotion of antioxidant-related factors (including superoxide dismutase, glutathione peroxidase, and catalase) activities. Additionally, nicorandil treatment attenuated the inflammatory response in the hippocampus of TBI rat, as evidenced by the upregulated levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α), as well as the downregulated level of IL-10. Mechanistically, nicorandil treatment significantly enhanced the mRNA and protein levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus of TBI rats. CONCLUSION: These findings suggest that nicorandil mitigates cognitive impairment after TBI by suppressing oxidative stress and inflammation, potentially through enhancing BDNF and NGF levels.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Nicorandil , Animais , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Aprendizagem em Labirinto , Fator de Crescimento Neural/metabolismo , Nicorandil/farmacologia , Estresse Oxidativo
12.
Bioorg Med Chem ; 101: 117637, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368633

RESUMO

Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.


Assuntos
Fatores de Crescimento Neural , Quinolinas , Animais , Ratos , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Células PC12/efeitos dos fármacos , Fosforilação
13.
Pain Res Manag ; 2024: 1552594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410126

RESUMO

Objectives: Knee osteoarthritis (KOA) pain is caused by nociceptors, which are actually sensory nerve fiber endings that can detect stimuli to produce and transmit pain signals, and high levels of NGF in synovial tissue led to peripheral hyperalgesia in KOA. The purpose of this study is to investigate how sensory nerve fibers respond to the NGF/TrKA signal pathway and mediate the peripheral hyperalgesia in KOA rats. Methods: Forty SD male rats were randomly divided into 4 groups: normal, KOA, KOA + NGF, and KOA + siRNA TrKA. KOA model rats were induced by anterior cruciate ligament transection (ACLT). Mechanical and cold withdrawal thresholds (MWT and CWT) were measured 4 times in each group. The synovial tissues were harvested on day 28, and the expressions of NGF, TrKA, TRPV1, IL-1ß, and PGP9.5 were determined using western blot, qPCR, and immunofluorescence staining. The primary rat fibroblast-like synoviocytes (FLSs) and DRG cells were divided into 4 groups as in vivo. The expressions of NGF, TrKA, TRPV1, and CGRP in vitro were determined using western blot and qPCR. Results: KOA and intra-articular injection with NGF protein increased both mRNA and protein levels, not only TRPV1, PGP 9.5, and IL-1ß in the synovial tissue, but also TRPV1, PGP 9.5, and S100 in the DRG tissue, while above changes were partly reversed after siRNA TrKA intervention. Besides, siRNA TrKA could improve peripheral hyperalgesia and decreased the TRPV1 positive nerve fiber innervation in synovial tissue. The results in vitro were consistent with those in vivo. Conclusion: This study showed the activation of the NGF/TrKA signaling pathway in KOA promoted the release of pain mediators, increased the innervation of sensory nerve fibers in the synovium, and worsened peripheral hyperalgesia. It also showed increased TRPV1 positive sensory innervation in KOA was mediated by NGF/TrKA signaling and exacerbated peripheral hyperalgesia.


Assuntos
Hiperalgesia , Osteoartrite do Joelho , Ratos , Masculino , Animais , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Fator de Crescimento Neural/efeitos adversos , Fator de Crescimento Neural/metabolismo , Transdução de Sinais/fisiologia , Dor , RNA Interferente Pequeno
14.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333908

RESUMO

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Assuntos
Fator de Crescimento Neural , Osteogênese , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Polpa Dentária , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , RNA Interferente Pequeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proliferação de Células
15.
Physiol Rep ; 12(3): e15933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312021

RESUMO

A feature of peripheral artery diseases (PAD) includes limb ischemia/reperfusion (I/R) and ischemia. Both I/R and ischemia amplify muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses (termed as exercise pressor reflex). Nevertheless, the underlying mechanisms responsible for the exaggerated autonomic responses in PAD are undetermined. Previous studies suggest that acid-sensing ion channels (ASICs) in muscle dorsal root ganglion (DRG) play a leading role in regulating the exercise pressor reflex in PAD. Thus, we determined if signaling pathways of nerve growth factor (NGF) contribute to the activities of ASICs in muscle DRG neurons of PAD. In particular, we examined ASIC1a and ASIC3 currents in isolectin B4 -negative muscle DRG neurons, a distinct subpopulation depending on NGF for survival. Hindlimb I/R and ischemia were obtained in male rats. In results, femoral artery occlusion increased the levels of NGF and NGF-stimulated TrkA receptor in DRGs, whereas they led to upregulation of ASIC3 but not ASIC1a. In addition, application of NGF onto DRG neurons increased the density of ASIC3 currents and the effect of NGF was significantly attenuated by TrkA antagonist GW441756. Moreover, the enhancing effect of NGF on the density of ASIC3-like currents was decreased by the respective inhibition of intracellular signaling pathways, namely JNK and NF-κB, by antagonists SP600125 and PDTC. Our results suggest contribution of NGF to the activities of ASIC3 currents via JNK and NF-κB signaling pathways in association with the exercise pressor reflex in experimental PAD.


Assuntos
Canais Iônicos Sensíveis a Ácido , Fator de Crescimento Neural , Doença Arterial Periférica , Animais , Masculino , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Artéria Femoral/metabolismo , Gânglios Espinais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Fator de Crescimento Neural/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
16.
Brain Behav ; 14(1): e3340, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376038

RESUMO

BACKGROUND: The impact of cannabis uses on blood levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) remains uncertain, with conflicting findings reported in the literature. BDNF and NGF both are essential proteins for neuron's growth, and their dysregulation is seen in various mental disorders. This study aims to evaluate the relationship between cannabis usage and BDNF and NGF levels due to their potential implications for mental health. METHODS: A comprehensive search of electronic databases was performed using appropriate MeSH terms and keywords. Inclusion criteria comprised human studies investigating the relationship between cannabis use and BDNF and NGF levels. RESULTS: A total of 11 studies met the inclusion criteria and were included. The pooled analysis revealed a nonsignificant association between cannabis use and dysregulated blood levels of BDNF (random-effects model, standardized mean differences [SMD] = .26, 95% CI -.34 to .76, p = .40). The results of our subgroup analysis based on BDNF source showed a nonsignificant between-group difference. For NGF levels, four studies were included, the pooled analysis revealed a nonsignificant association between cannabis use and dysregulated blood levels of NGF (random-effects model, SMD = -.60, 95% CI -1.43 to -.23, p = .16). In both analyses, high heterogeneity was observed among the included studies which is a notable limitation to current meta-analysis. CONCLUSION: This systematic review highlights the need for further research to elucidate the relationship between cannabis use and these neurotrophic factors. A better understanding of these associations can contribute to our knowledge of the neurobiological effects of cannabis and inform potential implications for mental health, cognitive function, and neurodegenerative disorders.


Assuntos
Cannabis , Transtornos Relacionados ao Uso de Substâncias , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/metabolismo
17.
Int Immunopharmacol ; 130: 111733, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38387191

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder in which monocytes adhering to synovial tissue differentiate into the pro-inflammatory M1 macrophage phenotype. Nerve growth factors (NGF) referred to as neurotrophins have been associated with inflammatory events; however, researchers have yet to elucidate the role of NGF in RA. Our examination of clinical tissue samples and analysis of data sourced from the Gene Expression Omnibus dataset unveiled elevated expression levels of M1 macrophage markers in human RA synovial tissue samples compared to normal tissue, with no such distinction observed for M2 markers. Furthermore, immunofluorescence data depicted increased expression levels of NGF and M1 macrophages in RA mice in contrast to normal mice. It appears that NGF stimulation facilitates macrophage polarization from the M0 to the M1 phenotype. It also appears that NGF promotes ICAM-1 production in human RA synovial fibroblasts, which enhances monocyte adhesion through the TrkA, MEK/ERK, and AP-1 signaling cascades. Our findings indicate NGF/TrkA axis as a novel target for the treatment of RA.


Assuntos
Artrite Reumatoide , Molécula 1 de Adesão Intercelular , Monócitos , Fator de Crescimento Neural , Animais , Humanos , Camundongos , Artrite Reumatoide/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fator de Crescimento Neural/metabolismo
18.
Eur J Pharmacol ; 967: 176398, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350591

RESUMO

OBJECTIVES: Inflammation regulates ventricular remodeling after myocardial infarction (MI), and gabapentin exerts anti-inflammatory effects. We investigated the anti-inflammatory role and mechanism of gabapentin after MI. METHODS: Rats were divided into the sham group (n = 12), MI group (n = 20), and MI + gabapentin group (n = 16). MI was induced by left coronary artery ligation. The effects of gabapentin on THP-1-derived macrophages were examined in vitro. RESULTS: In vivo, 1 week after MI, gabapentin significantly reduced inducible nitric oxide synthase (iNOS; M1 macrophage marker) expression and decreased pro-inflammatory factors (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß). Gabapentin upregulated the M2 macrophage marker arginase-1, as well as CD163 expression, and increased the expression of anti-inflammatory factors, including chitinase-like 3, IL-10, and transforming growth factor-ß. Four weeks after MI, cardiac function, infarct size, and cardiac fibrosis improved after gabapentin treatment. Gabapentin inhibited sympathetic nerve activity and decreased ventricular electrical instability in rats after MI. Tyrosine hydroxylase and growth-associated protein 43 were suppressed after gabapentin treatment. Gabapentin downregulated nerve growth factor (NGF) and reduced pro-inflammatory factors (iNOS, TNF-α, and IL-1ß). In vitro, gabapentin reduced NGF, iNOS, TNF-α, and IL-1ß expression in lipopolysaccharide-stimulated macrophages. Mechanistic studies revealed that the peroxisome proliferator-activated receptor-γ antagonist GW9662 attenuated the effects of gabapentin. Moreover, gabapentin reduced α2δ1 expression in the macrophage plasma membrane and reduced the calcium content of macrophages. CONCLUSION: Gabapentin attenuates cardiac remodeling by inhibiting inflammation via peroxisome proliferator-activated receptor-γ activation and preventing calcium overload.


Assuntos
Infarto do Miocárdio , Fator de Necrose Tumoral alfa , Ratos , Animais , Gabapentina/farmacologia , Gabapentina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/metabolismo , Remodelação Ventricular , Fator de Crescimento Neural/metabolismo , Cálcio/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/metabolismo
19.
ACS Nano ; 18(10): 7504-7520, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412232

RESUMO

The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Animais , Exossomos/metabolismo , Diferenciação Celular/genética , Porosidade , Fosfatidilinositol 3-Quinases , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Regeneração Óssea/fisiologia , Osteogênese , Impressão Tridimensional
20.
Biofabrication ; 16(2)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38262053

RESUMO

Despite recent advances in the field of microphysiological systems (MPSs), availability of models capable of mimicking the interactions between the nervous system and innervated tissues is still limited. This represents a significant challenge in identifying the underlying processes of various pathological conditions, including neuropathic, cardiovascular and metabolic disorders. In this novel study, we introduce a compartmentalized three-dimensional (3D) coculture system that enables physiologically relevant tissue innervation while recording neuronal excitability. By integrating custom microelectrode arrays into tailored glass chips microfabricated via selective laser-etching, we developed an entirely novel class of innervation MPSs (INV-MPS). This INV-MPS allows for manipulation, visualization, and electrophysiological analysis of individual axons innervating complex 3D tissues. Here, we focused on sensory innervation of 3D tumor tissue as a model case study since cancer-induced pain represents a major unmet medical need. The system was compared with existing nociception models and successfully replicated axonal chemoattraction mediated by nerve growth factor (NGF). Remarkably, in the absence of NGF, 3D cancer spheroids cocultured in the adjacent compartment induced sensory neurons to consistently cross the separating barrier and establish fine innervation. Moreover, we observed that crossing sensory fibers could be chemically excited by distal application of known pain-inducing agonists only when cocultured with cancer cells. To our knowledge, this is the first system showcasing morphological and electrophysiological analysis of 3D-innervated tumor tissuein vitro, paving the way for a plethora of studies into innervation-related diseases and improving our understanding of underlying pathophysiology.


Assuntos
Neoplasias , Fator de Crescimento Neural , Humanos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Microeletrodos , Células Receptoras Sensoriais/metabolismo , Dor/metabolismo , Gânglios Espinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...